1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
| import matplotlib.pyplot as plt import numpy as np
def make_data(dim): mp = np.ndarray((dim,dim)) for i in range(dim): for j in range(0,i+1): if i==j: mp[i,j]=0 else: v = np.random.randint(10,500) mp[i,j] = v mp[j,i] = v return mp
class TabuSearch:
def __init__(self,max_tabu_size=10,candidate_num=11,asp_iter=100): self.max_tabu_size = max_tabu_size self.candidate_num = candidate_num self.asp_iter = asp_iter
def get_neighbor(self,x): neighbors = [] for i in range(len(x)): for j in range(i + 1, len(x)): neighbor = x.copy() neighbor[i], neighbor[j] = neighbor[j], neighbor[i] neighbors.append(neighbor) return neighbors
def get_candidates(self,neighbors): sorted_neighbors = sorted(neighbors,key=lambda item:self.target_function(item)) return sorted_neighbors[:self.candidate_num]
def aspiration_criterion(self,x,best_x,cur_iter,asp_iter): res1,res2 = self.target_function(x) , self.target_function(best_x) return res1 < res2 and cur_iter > asp_iter def target_function(self,x:list): path = [self.start] + x + [self.start] cur = path[0] res = 0 for nex in path[1:]: res += self.mp[cur,nex] cur = nex return res
def run(self,mp:np.ndarray,start,iter_num=1000): tabu_table = [] dim = mp.shape[0] self.start = start self.mp = mp x = filter(lambda i:i != start,range(0,dim)) x = list(x) best_x = x.copy() records = [] for iter in range(iter_num): neighbors = self.get_neighbor(x) candidates = self.get_candidates(neighbors) best_candidate = candidates[0] if best_candidate not in tabu_table: x = best_candidate else: if self.aspiration_criterion(best_candidate,best_x,iter,self.asp_iter): x = best_candidate tabu_table.remove(best_candidate) else: for candidate in candidates: if candidate not in tabu_table: x = candidate break if len(tabu_table) > self.max_tabu_size: tabu_table.pop(0) tabu_table.append(x) if self.target_function(x) < self.target_function(best_x): best_x = x records.append(self.target_function(best_x)) return [start] + best_x +[start] , self.target_function(best_x) , records
np.random.seed(100) city_num = 10
mp = np.array([[ 0, 18, 290, 333, 369, 353, 89, 442, 404, 360,], [ 18, 0, 446, 364, 63, 76, 236, 24, 300, 250,], [290, 446, 0, 290, 153, 238, 373, 326, 68, 410,], [333, 364, 290, 0, 147, 103, 96, 396, 165, 374,], [369, 63, 153, 147, 0, 398, 425, 395, 151, 255,], [353, 76, 238, 103, 398, 0, 221, 110, 14, 101,], [ 89, 236, 373, 96, 425, 221, 0, 453, 333, 145,], [442, 24, 326, 396, 395, 110, 453, 0, 59, 441,], [404, 300, 68, 165, 151, 14, 333, 59, 0, 203,], [360, 250, 410, 374, 255, 101, 145, 441, 203, 0,]] )
tbs = TabuSearch() best_x,best_y,records = tbs.run(mp,0,10) print(best_x,best_y) plt.plot(range(len(records)),records) plt.show()
|